237 research outputs found

    Do auditory mismatch responses differ between acoustic features?

    Get PDF
    Mismatch negativity (MMN) is the electroencephalographic (EEG) waveform obtained by subtracting event-related potential (ERP) responses evoked by unexpected deviant stimuli from responses evoked by expected standard stimuli. While the MMN is thought to reflect an unexpected change in an ongoing, predictable stimulus, it is unknown whether MMN responses evoked by changes in different stimulus features have different magnitudes, latencies, and topographies. The present study aimed to investigate whether MMN responses differ depending on whether sudden stimulus change occur in pitch, duration, location or vowel identity, respectively. To calculate ERPs to standard and deviant stimuli, EEG signals were recorded in normal-hearing participants (N = 20; 13 males, 7 females) who listened to roving oddball sequences of artificial syllables. In the roving paradigm, any given stimulus is repeated several times to form a standard, and then suddenly replaced with a deviant stimulus which differs from the standard. Here, deviants differed from preceding standards along one of four features (pitch, duration, vowel or interaural level difference). The feature levels were individually chosen to match behavioral discrimination performance. We identified neural activity evoked by unexpected violations along all four acoustic dimensions. Evoked responses to deviant stimuli increased in amplitude relative to the responses to standard stimuli. A univariate (channel-by-channel) analysis yielded no significant differences between MMN responses following violations of different features. However, in a multivariate analysis (pooling information from multiple EEG channels), acoustic features could be decoded from the topography of mismatch responses, although at later latencies than those typical for MMN. These results support the notion that deviant feature detection may be subserved by a different process than general mismatch detection

    Summer Whistle Counts, Roadside Counts, and Fall Abundance of Northern Bobwhite

    Get PDF
    Reliable information on fall abundance of northern bobwhite (Colinus virginianus) is important for proper harvest management. Aerial surveys can provide reliable estimates of abundance, but can be expensive. Alternatively, whistle counts and roadside counts are indices of abundance that are relatively inexpensive, simple, and commonly used by biologists. We compared whistle and roadside counts conducted during summer to fall relative abundance (coveys/km) estimates obtained using helicopter surveys. All data were collected at the pasture scale (mean 1⁄4 1,716–2,762 ha) on the King Ranch (334,000 ha), which is comprised of 4 divisions across South Texas. Average survey effort was 245 km/year (1999–2001) and 1,194 km/year (1999–2007) for whistle and roadside counts, respectively, and 48 km/pasture/year (1999–2009) for fall helicopter surveys. Preliminary analyses demonstrate a moderate correlation between whistling bobwhite males and fall relative abundance (r 1⁄4 0.68). We collected age-based (i.e., chicks, juveniles, and adults) and population structure-based (i.e., singles, pairs, or coveys) data for roadside counts. Correlations between roadside counts and fall relative abundance varied by age and population structure. We found moderate correlation between total juveniles and fall relative abundance (r 1⁄4 0.49); all other correlations were low (r 1⁄4 ,0.36). We explore the feasibility of using summer whistle and roadside counts as a surrogate for fall relative abundance and discuss optimum timing to conduct surveys

    Learning boosts the decoding of sound sequences in rat auditory cortex

    Get PDF
    Continuous acoustic streams, such as speech signals, can be chunked into segments containing reoccurring patterns (e.g., words). Noninvasive recordings of neural activity in humans suggest that chunking is underpinned by low-frequency cortical entrainment to the segment presentation rate, and modulated by prior segment experience (e.g., words belonging to a familiar language). Interestingly, previous studies suggest that also primates and rodents may be able to chunk acoustic streams. Here, we test whether neural activity in the rat auditory cortex is modulated by previous segment experience. We recorded subdural responses using electrocorticography (ECoG) from the auditory cortex of 11 anesthetized rats. Prior to recording, four rats were trained to detect familiar triplets of acoustic stimuli (artificial syllables), three were passively exposed to the triplets, while another four rats had no training experience. While low-frequency neural activity peaks were observed at the syllable level, no triplet-rate peaks were observed. Notably, in trained rats (but not in passively exposed and naĂŻve rats), familiar triplets could be decoded more accurately than unfamiliar triplets based on neural activity in the auditory cortex. These results suggest that rats process acoustic sequences, and that their cortical activity is modulated by the training experience even under subsequent anesthesia

    Neural correlates of auditory pattern learning in the auditory cortex

    Get PDF
    Learning of new auditory stimuli often requires repetitive exposure to the stimulus. Fast and implicit learning of sounds presented at random times enables efficient auditory perception. However, it is unclear how such sensory encoding is processed on a neural level. We investigated neural responses that are developed from a passive, repetitive exposure to a specific sound in the auditory cortex of anesthetized rats, using electrocorticography. We presented a series of random sequences that are generated afresh each time, except for a specific reference sequence that remains constant and re-appears at random times across trials. We compared induced activity amplitudes between reference and fresh sequences. Neural responses from both primary and non-primary auditory cortical regions showed significantly decreased induced activity amplitudes for reference sequences compared to fresh sequences, especially in the beta band. This is the first study showing that neural correlates of auditory pattern learning can be evoked even in anesthetized, passive listening animal models

    Field Application of Sustained-Yield Harvest Management for Northern Bobwhite in Texas

    Get PDF
    Sustained-yield harvest (SYH) is considered a potentially viable strategy for managing harvest of northern bobwhites (Colinus virginianus). However, application of SYH has not been evaluated for northern bobwhites. We evaluated the application of using SYH as a harvest management strategy for bobwhite during the 2007 2008 and 2008 2009 hunting seasons in 2 ecoregions of Texas (Rolling Plains, South Texas Plains). We collected field data at 3 study sites/ecoregion (900 1,900 ha each; 2 hunted sites and 1 control) to estimate 4 demographic parameters (fall and spring density, overwinter survival in the absence of hunting, and harvest rate). We used these data to parameterize the additive harvest model for bobwhites and compare predictions of spring abundance of the model with field estimates. The additive harvest model, compared to field estimates, consistently underestimated spring population density (mean 6 SE) by 55.7 6 17.8% (2007 2008) and 34.1 6 4.9% (2008 2009) in the Rolling Plains, and by 26.4 6 25.3% (2007 2008) and 49.1 6 2.1% (2008 2009) in the South Texas Plains. Implementing SYH in the field, despite its potential benefits, will be challenging given the need for reliable estimates of 3 key population parameters (fall and spring density, and natural mortality in the absence of hunting) and the high variation often associated with them. Conservative harvest prescriptions based on the lower 95% CIs of fall density estimates may permit sustainable harvest despite variation in density estimates

    The upgrade of GEO600

    Get PDF
    The German / British gravitational wave detector GEO 600 is in the process of being upgraded. The upgrading process of GEO 600, called GEO-HF, will concentrate on the improvement of the sensitivity for high frequency signals and the demonstration of advanced technologies. In the years 2009 to 2011 the detector will undergo a series of upgrade steps, which are described in this paper.Comment: 9 pages, Amaldi 8 conference contributio

    A Simulation Model of Sustained-Yield Harvest for Northern Bobwhite in South Texas

    Get PDF
    Recommended sustainable harvest rates for northern bobwhite (Colinus virginianus) vary greatly and range from 25% to 70% of the prehunt population. Because northern bobwhite populations have declined across their geographic range, determining sustainable harvest levels is critical for effective management. Our objectives were to use simulation modeling to identify sustainable rates of bobwhite harvest, probability of population persistence, and minimum viable population estimates. We also conducted a sensitivity analysis to evaluate the impacts of harvest on northern bobwhite populations in Texas, USA. We constructed a simulation model using Program STELLA 9.0 for a hypothetical northern bobwhite population on 800 ha in the South Texas Plains USA and modeled population dynamics to 100 years over a range of harvest rates (0–40%). A 20% harvest rate produced the greatest average yields (mean ± standard error = 231 ± 10 bobwhites harvested/year). Given a quasi-extinction criterion of ≀40 bobwhites (≀0.05 bobwhite/ha), a 30% harvest rate resulted in a high probability of quasi-extinction (PE = 0.75) within 47.8 ± 2.3 years. A 40% harvest rate was not sustainable (PE = 1.0), with quasi-extinction occurring within 15.5 ± 2.6 years. Harvesting northern bobwhite populations in the South Texas Plains at rates of 20−25% of the prehunt population should maximize long-term harvest while minimizing the probability of population extinction. Spring densities of 0.60−0.80 bobwhite/ha may represent minimum viable spring densities for northern bobwhite populations in the South Texas Plains as these are the densities associated with sustainable 20-25% harvest rates. Harvest rates \u3e30% are likely to be excessive with respect to long-term population persistence for northern bobwhite populations in the South Texas Plains

    Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors

    Get PDF
    We report an upper bound on the strain amplitude of gravitational wave bursts in a waveband from around 800Hz to 1.25kHz. In an effective coincident observing period of 62 hours, the prototype laser interferometric gravitational wave detectors of the University of Glasgow and Max Planck Institute for Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations and incident directions. This is roughly a factor of 2 worse than the theoretical best limit that the detectors could have set, the excess being due to unmodelled non-Gaussian noise. The experiment has demonstrated the viability of the kind of observations planned for the large-scale interferometers that should be on-line in a few years time.Comment: 11 pages, 2 postscript figure

    A Spitzer IRAC Imaging Survey for T Dwarf Companions Around M, L, and T Dwarfs: Observations, Results, and Monte Carlo Population Analyses

    Full text link
    We report observational techniques, results, and Monte Carlo population analyses from a Spitzer Infrared Array Camera imaging survey for substellar companions to 117 nearby M, L, and T dwarf systems (median distance of 10 pc, mass range of 0.6 to \sim0.05 M\odot). The two-epoch survey achieves typical detection sensitivities to substellar companions of [4.5 {\mu}m] \leq 17.2 mag for angular separations between about 7" and 165". Based on common proper motion analysis, we find no evidence for new substellar companions. Using Monte Carlo orbital simulations (assuming random inclination, random eccentricity, and random longitude of pericenter), we conclude that the observational sensitivities translate to an ability to detect 600-1100K brown dwarf companions at semimajor axes greater than ~35 AU, and to detect 500-600K companions at semimajor axes greater than ~60 AU. The simulations also estimate a 600-1100K T dwarf companion fraction of < 3.4% for 35-1200 AU separations, and < 12.4% for the 500-600K companions, for 60-1000 AU separations.Comment: 35 pages, 6 figure

    DC-readout of a signal-recycled gravitational wave detector

    Full text link
    All first-generation large-scale gravitational wave detectors are operated at the dark fringe and use a heterodyne readout employing radio frequency (RF) modulation-demodulation techniques. However, the experience in the currently running interferometers reveals several problems connected with a heterodyne readout, of which phase noise of the RF modulation is the most serious one. A homodyne detection scheme (DC-readout), using the highly stabilized and filtered carrier light as local oscillator for the readout, is considered to be a favourable alternative. Recently a DC-readout scheme was implemented on the GEO 600 detector. We describe the results of first measurements and give a comparison of the performance achieved with homodyne and heterodyne readout. The implications of the combined use of DC-readout and signal-recycling are considered.Comment: 11 page
    • 

    corecore